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THREE-DIMENSIONAL OPTIMUM THRUST TRAJECTORIES 

1 William G. Melbourne 

ABSTRACT 

The three -dimensional equations for  optimum variable thrust with 

An iterative routine to  power-limited propulsion systems a r e  presented. 

solve the two-point boundary value problem has been coupled with these 

equations to obtain numerical solutions for specified end conditions. A 

set of interplanetary rendezvous trajectories to Venus is presented , and 

the effect of orbital inclination for this case is assessed. 

I. OPTIMUM THRUST EQUATIONS 

The optimum thrust equations of power-limited flight a s  developed 

by Irving and Blum(') have been extended to  three dimensions(2). These 

equations a r i s e  from the following considerations. 

The rocket equation for power-limited propulsion is 

- dt 2 P  
- = -  1 l +  
"1 mo 

where mo and m1 are the vehicle masses a t  the beginning and end, respec- 

tively, of the flight, a is the thrust acceleration, and P is the power 

lResearch Group Supervisor, Jet  Propulsion Laboratory, California 
Institute of Technology, Pasadena , California. 
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expended in the rocket exhaust. The exhaust power is determined by the 

power rating of the powerplant carried by the vehicle and by the efficiency 

of conversion by the propulsion system. It is evident that m1 is maximized 

by minimizing the above integral. The value of this integral depends upon 

flight time, the mission involved (namely, the specification of the kine- 

matic conditions of the vehicle initially and terminally), the force field in 

which the vehicle travels, the nature of the thrust program used to accom- 

plish this mission, and, finally, the engineering design of the propulsion 

system. 

For the preliminary mission feasibility studies it is desirable to  

employ optimum thrust programs which exclude the complexity imposed by 

the engineering design but which bracket or isolate that class of trajecto- 

r ies  and vehicle performances which an actual vehicle would be capable of 

achieving. 

One such thrust program which partially fulfills this need is 

a dt is a mini- Ltl obtained by satisfying the criterion that the quantity 

mum using an unconstrained thrust magnitude. The justification of this 

program is based on the fact that over a wide range of specific impulse, 

but excluding lower values, the power conversion efficiency of the propul- 

sion system is nearly constant, thus allowing the removal of P from the 

integral. Since the thrust magnitude is unconstrained, this program yields 

the absolute minimum that [ t1 a2 dt may have, and therefore leads to a 
J o  

somewhat optimistic estimate of vehicle payload. 
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The present studies employ an inverse square central force field 

model in three dimensions. The equations of motion of a vehicle in such a 

field may be written in vectorial form as  

% - ' 4  

r + V V  - a = 0 

-m 
where r is the position vector, and V is the potential 

The minimization of a 2  dt may be accomplished 

in this force field. 

by calculus of varia- 

tions methods in which this integral is minimized subject to certain con- 

straints, namely, the equations of motion, the thrust program constraints, 

and the initial and terminal kinematic conditions specified by the mission. 

For  the variable thrust program i t  may be shown (2)  that the thrust 

acceleration equations which must be satisfied as necessary conditions for 

minimum Jot' a2 dt are 

.. - -  
B + (Z*V)OV = 0 (3) 

Since V is not an explicit function of time, these equations admit a first 

integral in scalar form which may be expressed as 

- & A 1  - m -  
a r - - a 2  + a . VV = constant 

2 (4) 

Because of the spherical symmetry of this problem it is advan- 

tageous to express this result in spherical coordinates. This coordinate 

system and the direction of the basis vectors a r e  illustrated in the 

accompanying sketch. 

3 
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4 

X 

The state variables for this formulation a r e  r ,  8, 6, u,  he, and hg, where 

u is radial velocity, and he and hg a r e  the components of angular momen- 

tum per  unit mass. 

manipulation it may be shown that Equations (2)  and (3 )  may be expressed 

as 

The control variables a r e  a,, a@,  and ag. After some 

. h2 P u - -  + 2 - a, = 0 
r r 

u - r = O  

h2 tang 

r 
6 + r a g  = 0 2 he - 

heh6 tang 
2 

- r ae  = 0 hg + 
r 

h e + r Q = O  2‘  

(7) 
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hg - r26 cos(# = 0 

2 h2 = h + he i 

2 h ~  tan(# * hgF(t) Klhg 
(i; a) -- - = 0 (12) 

r r 4 r 3 r3cosg 4 r 

2h a tang 
Q Q  = o  F(t) + 2 r 2  A[3] - - 4hear + 

dt r r r 

where h is the angular momentum per unit mass of the vehicle, and pis 

the gravitational constant of the central body. The quantity F(t) is an  

auxiliary variable, essentially one of the Lagrange multipliers which could 

not be easily eliminated. The constant K1 is a constant of integration 

resulting f rom the cyclic nature of the variable 8. Equation (4) becomes 

heF(t) 2hgtang - - 2ar [h2 - pr] - K l h a  - - (h a) = K2 
3 r 2 

. .  
a2 - 2arr + - 

r 3 r2 cos0 r 

5 
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The quantities K1  and K2 a r e  the only constants of motion which have been 

found. Equation (16) is useful in checking the accuracy of the numerical 

integrations of Equations (5) - (15).  It may be easily verified that these 

equations reduce to  those contained in Reference 1 upon reduction to two 

dimensions. 

11. TERMINAL CONDITIONS 

In practice, the state variables a r e  nearly always specified at the 

initial point of the trajectory and, in fact, many of them usually have 

specified terminal values. 

of a set  of interplanetary rendezvous trajectories commencing from the 

Earth's heliocentric position and terminating at Venus, whose orbit w a s  

considered to be circular but possessing an inclination of i = 3f3944 to the 

ecliptic plane. This final configuration may be obtained by specifying the 

terminal values of E, the total energy per  unit mass,  and h, for a circular 

orbit, and the value of hz, the z component of angular momentum. No con- 

straint or specification was  placed upon the terminal value of 0 ,  which 

results in a value of zero for K1. It may be shown that certain transversal-  

ity expressions a r i s e  for this case which must be satisfied at the terminal 

The numerical example to be presented consists 

A +  

point in order fully to 

E and h a r e  specified, 

minimize 1 L1  a2 dt. When the terminal values of 
0 

a s  above, the function M(t), given by 

M(t) = 2kr; + -(pr- 2ar h 2 ) 3 r 

6 

(17) 
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must be zero at t l .  Moreover, if hz is specified and @ is unspecified, the 

function N(t), given by 

I I 

must also be zero at tl. (For an elliptical terminal orbit, the orientation 

of the ellipse within the orbit plane is given by the argument of perigee, W .  

When E, h, hz, and w a r e  specified, it may be shown that M(t) + N(t) must 

be zero at t l .  ) 

The set of equations to be solved is a twelfth-order system and 

therefore requires the specification of twelve constants of integration. 

Specification of the six state variables initially leaves six additional con- 

stants to define the system. F o r  this numerical example, the specification 

of the terminal values of E, h, h,, K1, M(t), and either @ o r  N(t) satisfies 

this requirement. When N(tl) id  zero it may be shown that the value of 

a dt is either a relative minimum or  maximum with respect to @(tl) Lt' 
(see Fig. 4 and 6 ) .  

in the variation of 

This enables one to obtain the upper and lower bounds 

a2 dt for  rendezvous at different points on the orbit. Lt 
D. E. Richardson of JPL has programmed these equations for 

numerical solution on an IBM 7090 digital computer. To overcome the two- 

point boundary value problem associated with this type of equation, an 

iterative routine designed t o  efficiently conduct parametric analyses has 

been developed. This routine has been remarkably successful in the 

7 
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large-scale production of interplanetary flyby and rendezvous trajectories 

to nearly a l l  the planets, with flight times ranging from 30 days to 3 

years (2). 

111. NUMERICAL RESULTS 

Fig. 1 illustrates an ecliptic projection of an interplanetary t ra -  

je,ctory which wil l  rendezvous Venus in 120 days. The arrows represent 

the ecliptic projection of 2 at various points along the trajectory. Fig. 2 

shows the variation of celestial latitude of the vehicle along this trajectory; 

the thrust program is presented in Fig. 3. The rendezvous of this partic- 

u l a r  trajectory is a t  the optimum point on Venus's orbit, which, for this 

flight time, is @ = -3f189 on the ascending branch. Because of symmetry, 

the point @ = +3f 189 on the descending branch is also optimum. 

a2 dt with rendezvous at  different exhibits the variation in the value of 

points along the orbit of Venus. The angle JI is measured from the ascend- 

Fig. 4 

Lt 
ing node and is related to  @ through the expression 

s ing = sini sin$ (19) 

The iterative routine mentioned above was  used to generate a ser ies  

of two- and three-dimensional Venus trajectories for  a wide range of flight 

times. Fig. 5 shows the variation in 

model. 

a dt for  a two-dimensional sd' 
The effect of the third dimension due to the inclination of Venus's 

orbit is exhibited by Fig. 6, in which the increment in L t l  a2 dt over the 
J O  

8 
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two-dimensional value has been plotted. Both the upper and lower bounds 

of this increment a re  included. The variation in 9 for both of these cases 

is shown in Fig. 7. 

In ballistic interplanetary trajectories where velocity impulses a r e  

made at the terminal points, it is known that the effects of planetary inclina- 

tions on the required velocity increment can be quite severe. It wil l  be 

observed, however, that this is not the case for advanced propulsion t r a -  

jectories in which thrust is applied over an extended range. The reason 

for the comparatively slight effects of inclination is partly due to the small  

planetary inclinations involved and the relative efficiency with which the 

advanced system is capable of generating these required inclinations at 

the terminal point. 

Orbital eccentricity has a considerably more prominent effect on rtl a2 dt, particularly for nearby planets such as Mercury and Mars.  
J O  
Figure 8 illustrates an example of this effect for a set  of 90-day rendez- 

vous trajectories to Mars .  An orbital eccentricity of 0'10933 and an inclina- 

tion of 1'1 85 were adopted; the argument of perigee is -73'1 9. 

of the variation of 

contribution of inclination to  this variation is less  than 1% of the mean 

The magnitude 

a dt with $is about 5070 of the average value. The LT 
value. This was  confirmed by a comparison with an analogous set of two- 

dimensional trajectories. The transversality expression M(t) + N(t) is 

included in Fig. 8 and its zero crossings coincide with the maximum and the 

9 
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Fig. 1. Venus three- 
dimensional rendezvous 
trajectory, 12 0-day 
heliocentric flight time, 
ecliptic projection. 

I I + SUN 
a 

Fig. 2. Venus three-dimensional 
rendezvous trajectory, 12 0-day 
heliocentric flight time, celestial 
latitude of the vehicle 
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Fig. 3. Venus three-dimensional rendezvous 
trajectory, 120-day heliocentric flight time, 

thrust program 
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Fig. 5. Venus two-dimensional rendez- 

vous trajectories, variation of Jot' a2 dt 

with flight time 
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vous trajectories, the effect of orbital 4 
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Fig. 7. Venus three-dimensional rendezvous 
trajectories, variation of minimum and 

max imumht l  a2 dt, rendezvous points 

with flight time 
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Fig. 8. Mars  three-dimensional rendezvous trajectories, 90-day flight 
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